
## Shrimp Health Management: MPEDA / NACA initiative to put principles into practice among small-scale farmers in India

P.Arun Padiyar, B.Vishnu Bhat, Michael Phillips, and C.V.Mohan



# Background

- Shrimp farming area 154,000 ha
  - More than 92% small scale farmers (<2 ha)
  - Around 100,000 farmers
- Shrimp production 116,000 tonnes
- Species cultured: *P.monodon*
- Major issues
  - Viral disease problems (white spot disease since 1994)
  - Loose shell syndrome
- To address health issues, MPEDA/NACA initiated a program in the year 2000



### Village Demonstration - 2004

## Objectives

- To **promote adoption of Better Management Practices** at cluster level to reduce the risk of disease outbreaks and poor yield (CAPACITY BUILDING)
- To form farmer "Self-Help Groups" and Network of farmer SHGs (Farmer Associations) for cooperative approach in managing the shrimp farming activity (ORGANISING THE DISORGANISED SECTOR)
- To produce shrimps without use of banned chemicals (ADDRESSING FOOD SAFETY CONCERNS)
- Pilot trace-ability system implementation (TO MEET FUTURE MARKET REQUIREMENT)

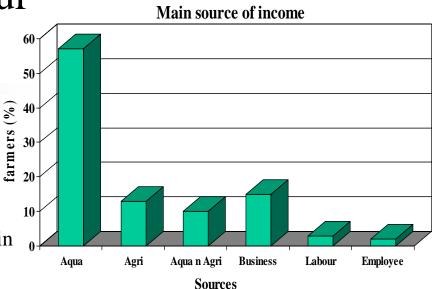


## MPEDA/NACA Village demonstrations



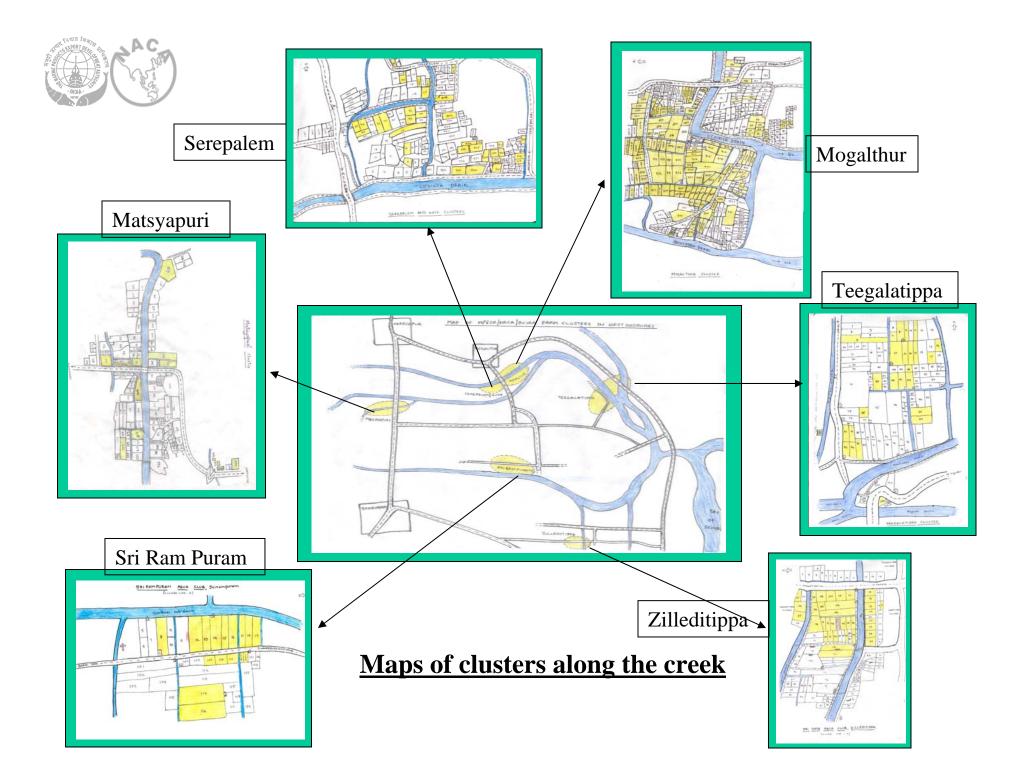
## Farming system of Mogalthur and surrounding villages "

### Small and marginal farmers


- Owning 2 ponds on an average
- Each farmer with 1 ha of water spread area
- Farmers, on an average, have 11 year experience in shrimp farming

### Improved traditional farming system

- Average stocking density 25,000 shrimp/Ha
- Low investments (around Rs. 50,000/Ha/crop)
- Production of around 250 Kg/Ha/crop


### Crop rotation practices

- Paddy culture
- Fish / fresh water prawn culture during rainy season.









## Approach

- Facilitation of farmer clubs for better organization
- 'Farmer to farmer' contact through weekly meetings
- 'Farmer to service provider' contact through weekly meetings
- Direct contact with farmers for on-farm technical support twice a week/pond
- Field tours for inter-club exchange of information
- Contract hatchery seed production system



### Contract hatchery production system

- Farmers and hatchery owners discuss 3 months prior to stocking season
- Agreement formed between farmers and hatchery owner on following items
  - Single brooder spawning and no mixing of nauplii
  - PCR (for WSSV) and MBV testing at different stages
  - No use of banned chemicals
  - Good management and record keeping
  - Access to farmer representatives at any time to observe the tanks
  - Previously agreed price



### Pond bottom and water preparation

- 1. Sludge removal and disposal away from pond site
- 2. Ploughing on wet soil if the sludge has not been removed completely
- 3. Water filtration using twin bag filters of 60 mesh size
- 4. Water depth of at least 80 cm at shallowest part of pond
- 5. Water conditioning for 10-15 days before stocking





### Seed selection and stocking practices

- 1. All farmers in club stocking seeds at same time
- 2. Uniform sized and colored PLs, actively swimming against the water current.
- 3. Nested PCR negative PLs for White Spot Virus
- 4. Seed transportation within 6 hrs.
- 5. Weak PL elimination before stocking using formalin (100 ppm) stress for 15-20 minutes in continuously aerated water.
- 6. On-farm nursery rearing of PLs for 10-15 days
- 7. Stocking during 1<sup>st</sup> week of Feb to 2<sup>nd</sup> week of March
- 8. Stocking into green water and avoiding transparent water during stocking





#### Post-stocking and grow-out

- 1. Use of water reservoirs, and 10-15 days aging before use on grow-out ponds.
- 2. Regular usage of agricultural lime, especially after water exchange and rain
- 3. No use of any harmful/banned chemicals like pesticides and antibiotics
- 4. Use of feed check trays to ensure feeding based on shrimp demand.
- 5. Feeding across the pond using boat/floating device to avoid local waste accumulation





### Post-stocking and grow-out

- 6. Regular removal of Benthic algae.
- 7. Water exchanges only during critical periods
- 8. Weekly checking of pond bottom mud for blackish organic waste accumulation and bad smell
- 9. Regular shrimp health checks, and weekly health and growth monitoring using a cast net
- 10. Removal and safe disposal of sick or dead shrimp
- 11. Emergency harvesting after proper decision making
- 12. No draining or abandoning of disease affected stocks
- 13. Pond daily management record maintenance





# BMP Adoption Rates over last 2 years

| Pond bottom preparation                   |                     |      |      |        |
|-------------------------------------------|---------------------|------|------|--------|
| BMP                                       | Non-demo Demo ponds |      |      | onds   |
|                                           | ponds<br>2004       | 2004 | 2003 | Change |
| Sludge<br>removal                         | 66                  | 100  | 100  | -      |
| Sludge<br>disposal away<br>from pond site | 80                  | 97   | 89   | + 8    |
| Ploughing (on<br>wet soil)                | 13                  | 54   | 56   | - 2    |





| Filling & water preparation                                                 |               |      |        |        |
|-----------------------------------------------------------------------------|---------------|------|--------|--------|
| BMP                                                                         | Non-demo      | D    | emo po | onds   |
|                                                                             | ponds<br>2004 | 2004 | 2003   | Change |
| Water filtration by twin bag<br>filters of 300 micron mesh<br>size          | 20            | 52   | 79     | - 27   |
| > 2 ft water at stocking                                                    | 8             | 10   | 7      | + 3    |
| Stocking in green colored<br>water (avoid stocking in<br>transparent water) | 30            | 84   | 88     | - 4    |





| Seed selection and stocking time                                                   |               |      |        |        |
|------------------------------------------------------------------------------------|---------------|------|--------|--------|
| BMP                                                                                | Non-demo      | D    | emo po | onds   |
|                                                                                    | ponds<br>2004 | 2004 | 2003   | Change |
| PCR screening of seeds for WSSV                                                    | 14            | 92   | 85     | + 7    |
| On-farm nursery<br>reared seeds                                                    | 18            | 95   | 46     | + 49   |
| Stocking during 1 <sup>st</sup><br>week of Feb. to 2 <sup>nd</sup><br>week of Mar. | 58            | 94   | 47     | + 47   |





| Post stocking and grow-out                     |               |      |        |        |
|------------------------------------------------|---------------|------|--------|--------|
| BMP                                            | Non-demo      | D    | emo po | onds   |
|                                                | ponds<br>2004 | 2004 | 2003   | Change |
| Demand feeding by check trays                  | 22            | 95   | 88     | + 7    |
| Regular use of Agri<br>lime                    | 53            | 100  | 100    | -      |
| No use of banned<br>chemicals -<br>Endosulphan | 87            | 100  | 100    | -      |





## % Ponds in each grade

| Grades | Pı   | Pre- stocking |        |      | ost-stock | ing    |
|--------|------|---------------|--------|------|-----------|--------|
|        | 2003 | 2004          | Change | 2003 | 2004      | Change |
| A      | 53   | 34            | - 19   | 24   | 25        | + 1    |
| В      | 34   | 48            | + 14   | 34   | 57        | + 23   |
| С      | 13   | 18            | + 5    | 42   | 18        | - 24   |





# Crop outcomes





### Crop outcomes (average values) during 2004: Demo Vs Non-demo ponds

| Outcomes                               | Demo ponds |              |             |
|----------------------------------------|------------|--------------|-------------|
|                                        | Demo       | Non-<br>demo | Improvement |
| Planned harvest (%)                    | 44         | 30           | + 14        |
| Harvests due to shrimp mortalities (%) | 32         | 40           | + 8         |
| Crop duration (Days)                   | 104        | 91           | + 13        |
| Production (Kg/Ha)                     | 323        | 243          | + 80        |
| Mean body weight (g)                   | 25         | 16.5         | + 8.5       |
| Survival (%)                           | 60         | 39           | + 21        |

- Increased yield with decreased stocking densities
  - Average stocking density in demo ponds was 9500 seed/ha lower compared to non-demo ponds (in demo it was 20500/ha, in non-demo it was 30000/ha)

# Crop outcomes (average values) in demo ponds: 2003 Vs 2004

| Outcomes                               | Demo ponds |      |             |
|----------------------------------------|------------|------|-------------|
|                                        | 2004       | 2003 | Improvement |
| Planned harvest (%)                    | 44         | 18   | + 26        |
| Harvests due to shrimp mortalities (%) | 32         | 82   | + 50        |
| Crop duration (Days)                   | 104        | 87   | + 17        |
| Production (Kg/Ha)                     | 323        | 315  | + 8         |
| Mean body weight (g)                   | 25         | 18   | + 7         |
| Survival (%)                           | 60         | 58   | + 2         |

- Increased yield with decreased stocking densities
  - Average stocking density decreased by 6500 seed/ha in 2004 (in 2003 it was 27000/ha, in 2004 it was 20500/ha)



### Pre-stocking performance grades and Crop outcomes

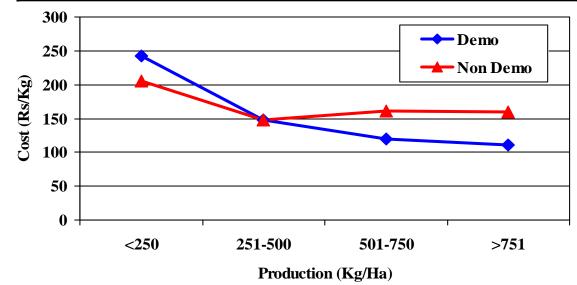
| Grades | Kg/Ha | Survival rate<br>(%) | Average<br>count | FCR | Stocking<br>densities<br>(seed/ha) |
|--------|-------|----------------------|------------------|-----|------------------------------------|
| А      | 378   | 65                   | 41               | 1.7 | 23,500                             |
| В      | 288   | 60                   | 39               | 2   | 18,500                             |
| С      | 273   | 52                   | 39               | 2   | 21,000                             |



### Post-stocking performance grades and Crop outcomes

| Grades | Kg/Ha | Survival rate<br>(%) | Average<br>count | FCR | Stocking<br>densities<br>(seed/ha) |
|--------|-------|----------------------|------------------|-----|------------------------------------|
| А      | 495   | 81                   | 38               | 1.6 | 22,500                             |
| В      | 283   | 59                   | 39               | 1.9 | 19,500                             |
| С      | 168   | 33                   | 43               | 2.3 | 21,500                             |




### Economics: Demo Vs Non-demo ponds

| Average values        | Demo   | Non-demo |
|-----------------------|--------|----------|
| Cost of production/Ha | 48,900 | 44,000   |
| Revenue/Ha            | 64,300 | 44,900   |
| Profit margin Rs/Ha   | 15400  | 900      |
| Ponds (%) with profit | 62     | 47       |



### Cost of Production (Rs/Kg)

| Production       | Cost of Production (Rs/Kg) |     |            |  |  |
|------------------|----------------------------|-----|------------|--|--|
| category (Kg/ha) | Demo Non-demo              |     | Difference |  |  |
| < 250            | 242                        | 205 | + 37       |  |  |
| 251-500          | 148                        | 148 | 0          |  |  |
| 501-750          | 119                        | 161 | - 42       |  |  |
| >750             | 111                        | 159 | - 48       |  |  |
| Average cost     | 176                        | 181 | - 5        |  |  |

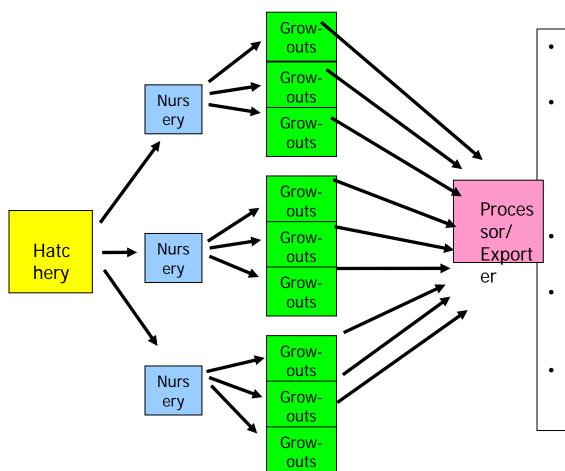




| Activity              | Demo | Non-demo | Difference |
|-----------------------|------|----------|------------|
| Sludge removal        | 18   | 12       | + 6        |
| Initial water filling | 6    | 6        | 0          |
| Pre-stocking          | 24   | 18       | + 6        |
| Seed                  | 35   | 40       | - 5        |
| Feed                  | 65   | 82       | - 17       |
| Agri lime             | 9    | 3        | + 6        |
| Water exchange        | 21   | 25       | - 4        |
| Post-stocking         | 97   | 113      | - 16       |

In demo ponds compared to non-demo ponds
Savings from
Seed – 5 Rs lesser/kg
Feed - 17 Rs/Kg
Water exchange - 4 Rs/Kg
Chemicals – 3 Rs/kg

#### More expenditure on


- Sludge removal 6 Rs more/Kg
- Agri lime 6 Rs/Kg



- Through Aquaclub formation and follow up of BMPs farmers can achieve
  - Lowered risk of disease outbreaks
  - Better production
  - Better quality inputs for lower/justifiable prices
    - Seed
    - Agri lime
  - Increased profits
  - Better quality of shrimps
  - Complete trace-ability till farm gate to meet the export demands



### Trace-ability system implementation - trial



- Each harvest at farm gate is given with unique Identity number
- For example id 1827 34 17 means
  - Grow-out pond id 1827
  - Nursery id 34
  - Hatchery tank id. 17
- Cluster Map is used for this numbering purpose
- Management record maintained in hatchery, nurseries and ponds – developed the computer database
- But difficulty faced in bringing the farmers and exporters together to follow-up traceability system and market the club material



# 2005 Ongoing program

- Consolidation of the past work and expansion to more farming areas in Andhra Pradesh
  - 16 aquaclubs in 28 villages
  - 556 farmers (935 ponds of 1168 acres).
- Expansion to other states
  - Karnataka, Orissa, Tamil Nadu and Gujarat

## Sustaining the Process

- MPEDA is working towards
  - Institutionalization of aquaclubs as aquaculture societies
  - Establishing a separate technical extension agency to sustain the process of BMP promotion and adoption



