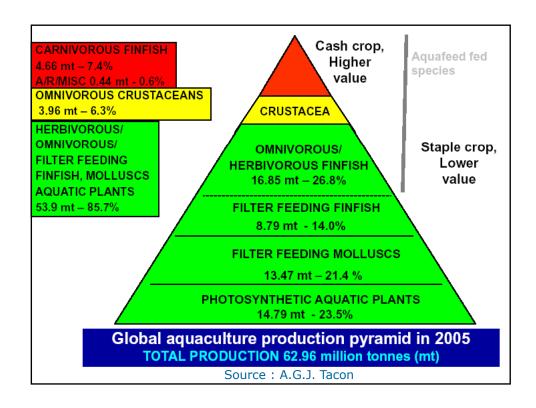
FEEDS AND FEEDING STRATEGIES IN AQUACULTURE

M.C. Nandeesha
Centre for Aquaculture Research
& Development.
St. Xaviers Bishramganj


Bishramganj - 799103, Tripura, India.

TOP AQUACULTURE PRODUCERS IN 2006 (FAO, 2008)

Total production :66.75mmt,US\$ 86.23 billion

•China (1st)	45.30 mmt (67.9%)	\$ 43.66 billion (1st)
•India	3.1 <mark>3</mark> mmt	\$ 3.43 billion
Indonesia	2.1 <mark>2mmt</mark>	\$ 2.58 billion
Philippines	2.0 <mark>9</mark> mmt	\$ 1.15 billion
Vietnam	1.69 <mark>mmt</mark>	\$ 3.33 billion
 Thailand 	1.38mmt	\$ 2.22 billion
 Korea rep. 	1.28mmt	\$ 1.69 billion
Japan	1.22mmt	\$ 4.15 billion
 Bangladesh 	0.89mmt	\$ 1.36 billion
•Chile (10 th)	0.83mmt	\$ 4.48 billion(2 nd)
•Spain (17th)	293,288mt	\$ 361,554 million

Asia 92%, Americas 3.3%, Europe 3.2%, Africa 1.1%

Target commodities

- Tilapia
- Asian sea bass
- Groupers
- Snake head
- Seaweeds

Nutrition of fish and shrimp

- PROTEIN
- FAT
- CARBOHYDRATE
- VITAMINS
- MINERALS
- ENERGY

ROLE OF NATURAL FOOD IN FISH AND SHRIMP DIET

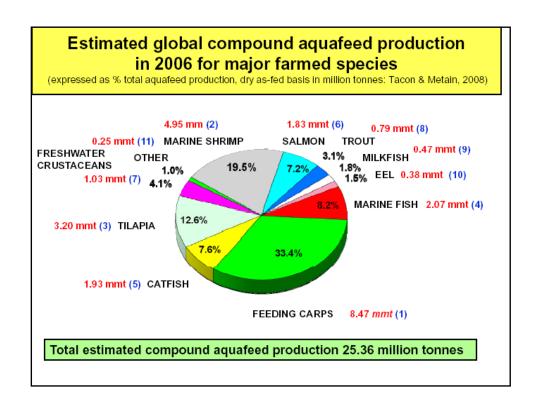
- MOTHER'S MILK
- PROTEIN -52.1%
- FAT-27.3%
- Carbohydrate -7.7%
- ENERGY-3.9 kcal/g
- SHRIMP AND FISH CAN GROW ON NATURAL FOOD FILTRATION

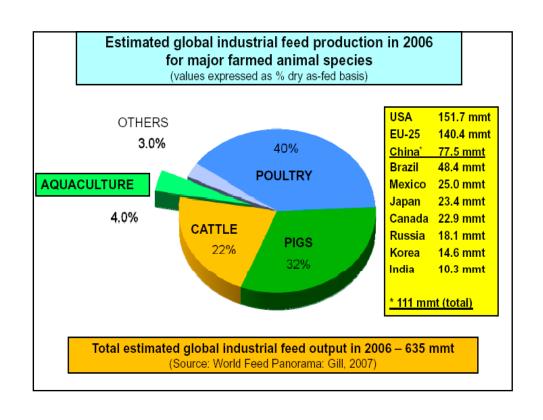
Proximate analysis of organisms serving as food for pond fishes (Dry matter composition)

Organism/ Group	Dry matt er	Protein	Carbo hydrat e	Lipid	Ash	Energy (Kcal/K g)
Bacteria						
Algae				4.7	10	5.4
Cyanophyta (blue greens)		31.3		2.2	13	46.7
Chlorophyta (green)	16.8	17.6		3.7	26.9	3773
Phaeophyta (brown algae)	14.1				32.3	3056
Bacillariophyceae (diatoms)		30.7		9.9	38.3	3654
Rhodophyta (red algae)	21.7				32.1	3170
Aquatic macro-vegetation	15.8	14.6		4.5	13.9	3906

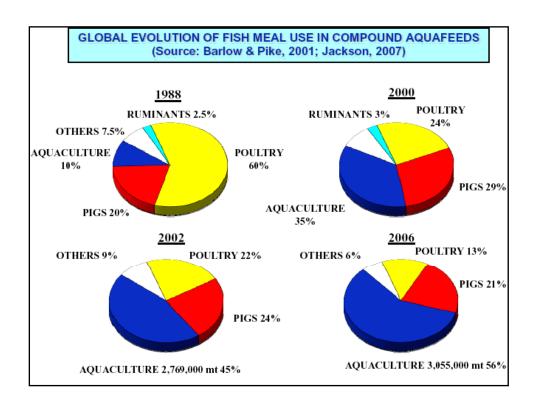
Organism/ Group	Dry matt er	Protein	Carbo hydrat e	Lipid	Ash	Energy (Kcal/K g)
Hemiptera (water bugs)	26	68.8				5150
Trichoptera (caddisflies)	14.8	34.7			11.8	5019
Diptera	16	55.3			6.9	5177
Chironomids (larvae)	19.1	59	22.5	4.8	5.8	5034
Molluscs	32.2	39.5	7.5	7.8	32.9	3889
Aquatic Detritus	91.5				12.4	4791

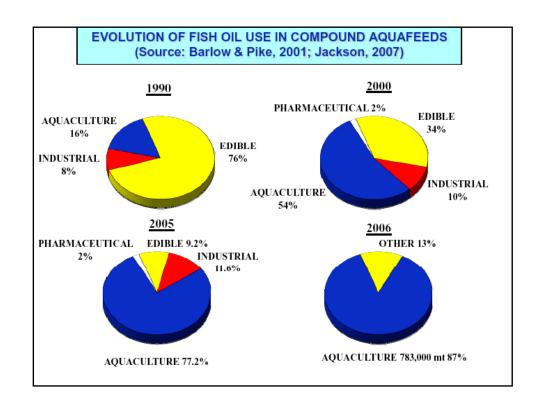
Since the values are averages of figures collected from different sources they do not necessarily add up to 100% Source: Modified from Helper (1988)

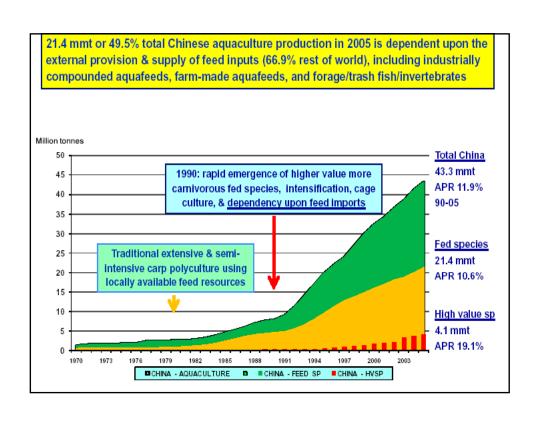

Organism/ Group	Dry matt er	Protei n	Carboh ydrate	Lipid	Ash	Energy (Kcal/K g)
Rotifers	11.2	64.3		20.3	6.2	4866
Oligochaetes	7.3	49.3		19	5.8	5569
Leeches	24	61			5.1	5432
CRUSTACEA						
Artemia	11	61.5		19.5	10.1	5835
Cladocera	9.6	56.5	28.2	19.3	7.7	4800
Copepoda	10.3	52.3	9.2	26.4	7.1	5445
Ostracoda	35	41.5				5683
Malacostraca (higher Crustacea)	24.6	49.9	18.4	20.3	19.6	5537
Insects	23.2	55.9	20.1	18.6	4.9	5075
Stone flies						4900
Mayflies	17.6	50.2			3.7	5046


Table 4: Composition of organic manures (as % by weight)				
Manure	C:N Ratio % Moisture-free basis			
ANIMAL MANURES		N	Р	K
Buffalo	19	1.3	0.55	0.59
Cattle	19	1.91	0.56	1.40
Sheep	29	1.87	0.79	0.92
Goat * Sheep		1.5	0.72	1.38
Horse	24	2.33	0.83	1.31
Pig	13	2.8	1.36	1.38
Human	8	7.24	1.72	2.41
Poultry manure	9	3.77	1.89	1.76

Nutrient solubility from fertilizers


Fertilizers	Nutrient solubility (%)			
	Phosphorus	Nitrogen		
Superphosphate	4.6	-		
Triple superphosphate	5.1	-		
Monoammonium phosphate	7.1	5,1		
Diammonium phosphate	16.8	11.7		
Sodium nitrate	-	61.7		
Ammonium sulphate		85.9		
Ammonium nitrate		98.8		
Calcium nitrate		98.7		


Manure	C:N Ratio	% Moisture-free basis			
ANIMAL MANURES		N	Р	K	
Duck manure	10	2.15	1.13	1.15	
Rabbit manure		1.72	1.30	1.08	
URINE					
Buffalo		2.05	0.01	3.78	
Cattle		9.74	0.05	7.78	
Sheep		9.90	0.10	12.31	
Goat + Sheep		9.64	0.14		
Pig		10.88	1.25	17.86	
Human	0.8	17.14	1.57	4.86	



Feed presentation

- How to present the feed
 -wet /dry/semi moist
- How to apply the feed
 Tray /Spray /Automatic feeder/
- How often to feed2 times/4 times /6 times /8 times
- When to feed
 Day time / night time

FEED CONVERSION RATIO

- Age
- Environment
- Quality of feed ingredients
- Processing method adopted
- Feeding frequency
- Feed presentation time
- Feed presentation method ...

after one hour immersion period					
Nutrient	Level at start	Level after one hour	Percent loss		
Dry matter (%)	100	81	19		
Crude protein (%)	52	41	21		
Carbohydrate (%)	16	8	50		
Vitamin C(mg/kg)	3089	332	89		
Thiamine (mg/kg)	29.5	0.7	98		
Riboflavin (mg/ kg)	55	7.5	86		
Pyridoxine(mg/kg)	14	1	93		
Niacin (mg/kg)	120	17	86		
Inositol (mg/kg)	4000	1928	52		
Choline (mg/kg)	3368	1835	45		
Pantothenate (mg/kg)	100	5.9	94		

	Nutrient requirements for fish and Prawn as percentages of diet,mg/kg, diet, or International Units (IU) per kilogram of diet (as-fed basis)					
	Nutrients	Asian Sea bass	Shrimp (<i>P.monodon</i>)	Groupers	Tilapia	Snake head (C. Striata)
	Energy Base (kcal DE/kg diet)	3000	3400	3700	3000	3100
	Protein, crude(digestible), (%)	42-45	25-45	40-50	32 (28)	43
	Fat (%)	12	6	4-9	5.5	6
	Fibre (%)	7	3		6	
	Calcium (%)	0.6	2	NT	R	
	Chlorine (%)	N/a	N/a	NT	NT	
	Magnesium (%)	N/a	0.3	0.05	0.06	
	Phosphorous (%)	0.4	1	0.6	0.5	
	Potassium (%)	N/a	1	NT	NT	
	Sodium (%)	R	N/a	NT	NT	
	Copper (mg/kg)	N/a	N/a	3	R	
1	lodine (mg/kg)	N/a	N/a	NT	NT	
	Iron (mg/kg)	N/a	0.02	150	NT	

Nutrients	Asian Seabass	Shrimp (P.monodon)	Common carp	Tilapia	Snake head (C.striata)
Zinc (mg.kg)	N/a	80	30	20	
Selenium (mg/kg)	R	0.17	NT	NT	
A (IU/kg)	N/a	10000	4000	NT	
D (IU/kg)	N/a	2000	NT	NT	
E (IU/kg)	R	200	100	50	
K (IU/kg)	N/a	10	NT	NT	
Water-soluble vitamins					
Riboflavin (mg/kg)	R	R	7	6	
Pantothenic acid (mg/kg)	15-90	100	30	10	
Niacin (mg/kg)	R	140	28	NT	
Vitamin B ₁₂ (mg/kg)	R	0.05	NR	NR	
Choline (mg/kg)	R	R	500	NT	
Biotin (mg/kg)	R	1	1	NT	
Folate (mg/kg)	R	R	NR	NT	
Thiamin (mg/kg)	R	30	0.5	NT	
Vitamin B., (mg/kg)	10.May	D	6	NT	

Asian Sea bass	Shrimp (<i>P.monodon</i>)	Common carp	Tilapia	Snake head (C.striata)
R	600	440	NT	
25-30	R	R	R	
3.8	1.63	1.31	1.18	
R	0.46	0.64	0.48	
R	0.71	0.76	0.87	
R	1.47	1	0.95	
4.9	1.54	1.74	1.43	
2.2	0.85	0.94	0.9	
R	1.63	1.98	1.55	
R	1.01	1.19	1.05	
R	0.28	0.24	0.28	
R	0.89	1.1	0.78	
R	R	1		
R	R	1	0.5-1	
	R 25-30 3.8 R R R R R R R R R R R R R R R R R R R	Sea bass (P.monodon) R 600 25-30 R 3.8 1.63 R 0.46 R 0.71 R 1.47 4.9 1.54 2.2 0.85 R 1.63 R 1.01 R 0.28 R 0.89 R R	Sea bass (P.monodon) carp R 600 440 25-30 R R 3.8 1.63 1.31 R 0.46 0.64 R 0.71 0.76 R 1.47 1 4.9 1.54 1.74 2.2 0.85 0.94 R 1.63 1.98 R 1.01 1.19 R 0.28 0.24 R 0.89 1.1 R R 1	Sea bass (P.monodon) carp R 600 440 NT 25-30 R R R 3.8 1.63 1.31 1.18 R 0.46 0.64 0.48 R 0.71 0.76 0.87 R 1.47 1 0.95 4.9 1.54 1.74 1.43 2.2 0.85 0.94 0.9 R 1.63 1.98 1.55 R 1.01 1.19 1.05 R 0.28 0.24 0.28 R 0.89 1.1 0.78 R R R 1

Note: These requirements have been determined with higher purified ingredients in which the nutrients are highly digestible, therefore the values presented represent near 100% bioavailability. R, required in diet but quantity not determined: NR, no dietary requirement demonstrated under experimental conditions: NT, not tested, n/a, not available and E, estimated. Data from various published sources.

Strategies

ALTERNATE FEED SOURCES

- •Conventional aquatic animal protein meals: fish meals, fish oil , squid meals, crustacean meals, krill meals.
- •Terrestrial vertebrate animal by-product meals:- meat meal, meat & bone meal, feather meal, poultry by-product meal, hatchery and chicken egg meals, blood meal & products....
- •Terrestrials and aquatic invertebrate animal protein meals:- marine polychaetes, terrestrial worms, insect pupae/larvae, krill, copepods...
- •Plant oilseed & pulse meals: Whole or extracted oil seed meals, concentrates & isolates Soya, rapeseed, sunflower, mustard, omega-3 fortified...

Contd.....

- Brewing/fermentation meals: SCP-yeast, algae, bacterial biomass, brewers & distillers grains & solubles....
- Cereals and flour/milling products: middlings, mill run
 , bran, gluten -rice , wheat , maize , sorghum...
- Agriculture waste/ products:- fruit wastes, pulp, cannery, leaves, tubers, roots, kitchen scraps...
- Biofuel /biodiesel byproduct :- yeasts, DDGS

Terrestrial livestock proteins and Fats.

- Terrestrial animal by- product meals represent the largest source of animal protein and lipid available to the agua feed industry.
- For example in 2006 the U.S. alone slaughtered:-33.8 million cattle (50% not used for human food), 104.8 million hogs (50% not used for human food), 9.0 billion chicken (37% not used for human food), 255 million turkeys (36% not used for human food)
- U.S. generated :-9.6 million tonnes of rendered products in 2006 (4.3F/5.3M)
- Globally :- 15-30 mmt of rendered products : APR 2.8% / year

Plant protein meals....

Aquaculture Research, 2007, 38, 551-579

doi: 10.1111/j.1365-2109.2007.01704.x

Expanding the utilization of sustainable plant products in aquafeeds: a review

Delbert M Gatlin III¹, Frederic T Barrows², Paul Brown³, Konrad Dabrowski⁴, T Gibson Gaylord¹, Ronald W Hardy⁵, Eliot Herman⁶, Gongshe Hu⁷, Åshild Krogdahl⁸, Richard Nelson⁹, Kenneth Overturf¹, Michael Rust¹⁰, Wendy Sealey⁵, Denise Skonberg¹¹, Edward J Souza⁷, David Stone⁵, Rich Wilson⁹ & Eve Wurtele¹²

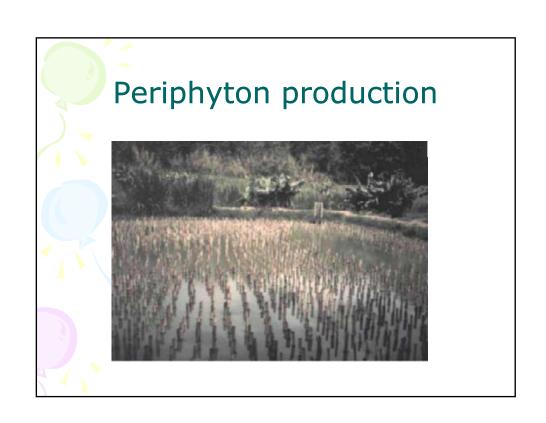
PLANT PROTEIN CONCENTARATES

- Canola & Rapeseed Protein Concentrate
- Corn/Maize Gluten Meal
- Cowpea Protein Concentrate
- Leaf Protein Concentrate
- Lupin Protein Concentrate
- Pea Protein Concentrate
- Potato Protein Concentrate
- Rice Protein Concentrate
- Soybean Protein Concentrate
- Wheat Gluten Meal
- General & Anti-Nutritional Factors

Endogenous anti-nutritional factors reportedly present within plant oilseeds and pulses commonly used within aquafeeds for farmed fish and shrimp (adapted from Liener, 1980 and Tacon, 1992)

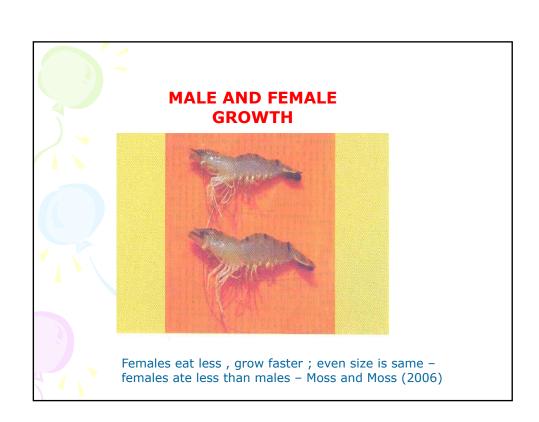
ANTI-NUTRITIONAL FACTOR1/

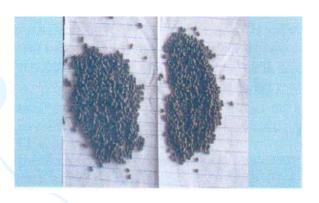
OILSEEDS	
Groundnut Arachis hypogaea Rapeseed Brassica campestris napus Indian mustard Brassica juncea Sunflower Helianthus annuus Cottonseed Gossypium spp. Linseed Linum usitatissimum Sesame Sesamum indicum	1 (T,C,PI),2,5,6,8 1 (T),3,5,7 1 (T),3,13 1 (T),6,7,20 5,8,10,12,24 4,5,8,13,15
Crambe <i>Crambe abyssinica</i> Soybean <i>Glycine max</i>	3 1 (T,E,C,Pa,In),2,3,5,6,8,11,12, 14,16,17,27


1/1-Protease inhibitors (T-trypsin, C-chymotrypsin, Pi-plasmin, Pr-pronase, Th-thrombin, S-subtillsin, En-endopeptidase, In-insect proteases, Pa-papain, E-elastin, Mc-microbial proteases), 2-Phytohaemagglutinins, 3-Glucosinolates, 4-Cyanogens, 5-Phytic acid, 6-Saponins, 7-Tannins, 8-Estrogenic factors, 9-Lathyrogens, 10-Gossypol, 11-Flatulence factor, 12-Anti-vitamin E factor, 13-Anti-thiamine factor, 14-Anti-vitamin A factor, 15-Anti-pyridoxine factor, 16-Anti-vitamin D factor, 17-Anti-vitamin B12 factor, 18-Amylase inhibitor, 19-Invertase inhibitor, 20-Arginase inhibitor, 21-Cholinesterase inhibitor, 22-Dihydroxyphenylalanine, 23-Mimosine, 24-Cyclopropenoic acid, 25-quinolizadine alkaloids, 26-canavanine, 27-allergens

Mixed Feeding schedules

Table 1: Summary results of previous studies on mixed feeding schedules in fish. LP-low protein diet; HP- High protein diet; the numbers in front of LP and HP indicate the number of days each of these diets were fed


Species	Rearing conditions	Feeding habits	Initial Wt (g)	Feed used (% Protein content)	Best schedule
Carla carla C. carla C. carla C. carla C. carpia L. rohita L. rohita M. peelli peelii D. niloticus D. niloticus D. niloticus	Outdoor cement tanks Earthen ponds Indoor fibreglass tanks Outdoor cement tank Earthen ponds Outdoor cement tank Outdoor cement tank Outdoor cement tanks Outdoor cement tanks Indoor plastic tanks Earthen ponds Indoor glassfibre tanks Indoor glassfibre tanks Indoor glassfibre tank Outdoor ponds	Omnivore Omnivore Cornivore Omnivore	0.5 2.2 0.6-1.0 1.9 1.1-5.1 0.53 0.3 0.8 3.1-4.1 2.7-20.6 22.8 0.2-1.1 1.9 33 to 37	15.9 (LP), 31.8 (HP) 9.5 (LP), 42.6 (HP) 33.5 (A), 35.1 (B), 46.7 (C) 16.4 (LP), 31.0 (HP) 9.5 (LP), 42.6 (HP) 16.0 (A), 26.2 (B), 31.7 (C) 16.7 (A), 19.7 (B), 15.9 (LP), 31.8 (HP) 18.4 (LP), 38.9 (HP) 9.5 (LP), 42.6 (HP) 40.6 (LP), 50.0 (HP) 18.2 (LP), 30.4 (HP) 18.0 (LP), 25.0 (HP) 33 (HP), 22 (LP)	1LP/3HP 1HP/1LP 1A/2C 1LP/3HP 1HP/1LP 2A/2C 25.6 (C), 30.9 (D) 1HP/1LP 1HP/1LP 1HP/1LP 2LP/3HP 1HP/1LP 2LP/3HP 1LP/2HP& 1LP/3HP 2HP/3LP



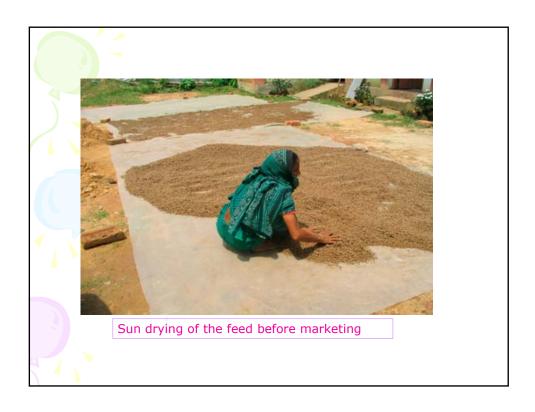
Fermentation technology

- In case of soybean products fermentation has been known to influence the growth of fish
- Rice bran single biggest commodity used in aquaculture
- Nutrients availability can be improved by fermentation process

Pellet size - Does it matter?

Length of pellet and diameter had no effect on growth (Mishra , 2006)

CONCLUSION


- As in human, recognition that farmed aquatic animal do not have a specific dietary requirement for a particular ingredients or food source (such as fish meal or fish oil), but rather have a specific dietary requirement 40 or so essential nutrients (whether they be contained within fish, a plant or animal or blood meal is irrelevant);
- Global recognition that terrestrial animal by-product meal, including non- ruminant blood meal and blood products, represent the largest and largely untapped source of animal protein and lipid available within the international market place for the aqua feed industry;
- We will need All the ingredients we can get: both plant and animal, provided they can be sustainably produced, are cost-effective, & nutritionally & environmentally sound for the target species in question.

